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We give here a rigorous deduction of the "hydrodynamic" equation which holds 
in the hydrodynamic limit, for a model system of one-dimensional identical hard 
rods interacting through elastic collisions. The equation should be considered as 
the analog of the Euler equation of real hydrodynamics. Owing to the degener- 
acy of the model, it is written in terms of a function g(q, v, t) expressing the 
density of particles with velocity v at the point q at time t. For this equation we 
prove an existence and uniqueness theorem in some natural class of functions. 
Our main result is the proof that if (P~, e > 0) is a class of initial states which 
are homogeneous on a scale much less than e -1, and if the corresponding 
particle densities tend, as �9 ~ 0, in the proper scale, to the initial hydrodynamic 
density g0(q, v), then, under some general assumptions on the states P~ and on 
go, the particle densities of the evolved states at time �9  tend as e ~ 0 to the 
unique solution of the hydrodynamic equation with initial condition go- The 
proof is completed by exhibiting a large class of initial families {P~, �9 > 0} 
which possess the required properties. 

KEY WORDS: Nonequilibrium statistical mechanics; hydrodynamic limit; 
Euler equation; one-dimensional hard rods. 

1. INTRODUCTION 

The problem of deriving hydrodynamic equations from the equations of 
motion of a particle system is one of the central problems in statistical 
mechanics, as is testified by the huge physical literature devoted to the 
explanation of its various aspects. It is now possible, in view of the recent 
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developments of rigorous statistical mechanics, to face the problem at a 
mathematical level for some simplified models of particle interaction. 

A previous attempt of a rigorous deduction of hydrodynamics should 
be mentioned here, namely, the important paper of Morrey, (1) who was the 
first, to our knowledge, to introduce and discuss the notion of "hy- 
drodynamic limit." We shall now briefly describe the ideas involved, having 
in mind mainly infinite particle systems, for which one should assume that 
the dynamics is well defined. 

The specific character of the hydrodynamic situation is that the initial 
probability distribution (initial state) depends .on a small parameter E, 
which characterizes the ratio of the typical microscopic and macroscopic 
lengths. More precisely, the initial state should be homogeneous on a 
microscale (i.e., the distribution almost goes into itself for translations of 
order much less than e-t), at least for its "essential parameters," and it 
should be nonhomogeneous for translations of order e-1. In investigating 
the dynamics of such a state, since the fact that the initial distribution is 
nonhomogeneous appears at a given point only after a time of the order 
e- 1, it is convenient to introduce the change of variables t -- e~-, where t 
and ~- denote the macroscopic and the microscopic times, respectively. It is 
expected that when e goes to zero (hydrodynamic limit) the change in 
macroscopic time of the essential parameters of the state will be described 
by hydrodynamic equations, more precisely by the Euler equations for a 
nonviscous fluid. It is assumed usually that the essential parameters are the 
particle density, the average particle momentum, and the temperature, or 
any other set of quantities connected with them by a one-to-one transfor- 
mation. The assumption that such a behavior actually takes place can be 
considered as the foundation of hydrodynamics. Usually it is explained by 
saying that locally, in microvolumes of diameter of order much less than 

-~, the probability distribution is "almost" a Gibbs equilibrium distribu- 
tion, and, on a macroscopic scale, where a point corresponds to an 
infinitely large microscopic volume, only the change in space and time of 
the parameters of the Gibbs distribution (which are determined by density, 
average momentum, and temperature) has to be taken into account. 

Morrey was not able to carry out his program, and in order to get the 
Euler equations he was compelled to introduce some assumptions on the 
evolution of a large-particle system which, up to now, have not been 
proved. In our opinion the difficulties faced by Morrey are of a fundamen- 
tal character. Apparently, it is impossible to deduce hydrodynamics without 
developing technical tools which allow also to prove the local Gibbs 
character of the states. In the simple case in which the initial state is 
translation invariant this is equivalent to the foundation of the fundamental 
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Boltzmann-Gibbs postulate of statistical mechanics in what is perhaps its 
most natural formulation (see Ref. 2). It is well known that this problem is 
very difficult and its solution is a task for the future. 

Since the situation is so poorly understood, it is useful to consider 
some simplified, degenerate, models, which, however, have the unique 
advantage that for them the hydrodynamic limit can be submitted to 
mathematical treatment. Because of the connection mentioned above be- 
tween hydrodynamics and convergence to equilibrium, we can hope to 
succeed only in the cases in which we control convergence to equilibrium. 
This determines the choice of the model which we consider in this paper, 
namely, one-dimensional hard rods with elastic collisions, for which conver- 
gence to equilibrium has already been studied in Ref. 3. We remark that 
similar motivations led recently to the investigation of the hydrodynamic 
limit for some models (perhaps even more caricatural) of stochastic dynam- 
ics.(4-6) 

In considering degenerate models we must give up from the beginning 
the hope of obtaining hydrodynamic equations of the type which is 
traditional in physics. In fact the very set of the parameters, the change of 
which is described by hydrodynamic equations, differs from the usual one. 
Thus in the model of one-dimensional hard rods the equilibrium state is 
determined by a function g(v) such that g(v)dv gives the average number 
of particles with velocities in the interval (v, v + dv) (see Ref. 3), and 
therefore the hydrodynamics will be described by a function g(q, v, t) giving 
the macroscopic mass distribution in space and velocity of the "hard rod 
fluid" at time t. So the picture which appears here is far from real 
hydrodynamics and can be considered only as a caricature. Nevertheless 
the authors hope that the study of such a degenerate situation may lead to 
a better understanding of the real hydrodynamics, in the same way as the 
study of deformities in living organisms is useful in understanding the 
physiology of normal organisms. 

We now describe, omitting technical details, the basic results of this 
paper. 

We consider the dynamics of an infinite system of identical hard rods 
of length d > 0 on the line R 1, which move inertially between collisions and 
at collision exchange velocities (elastic collisions). The precise definition of 
the dynamics in the phase space of an infinite system requires some 
additional restrictions on the initial point, which are discussed in detail in 
Ref. 3. We consider a family (P' ,  e > 0} of initial states, depending on the 
parameter e, i.e., a family of probability measures on the phase space of 
infinite hard rods on the line, which are concentrated on the subset of 
phase space for which the dynamics is well defined. Therefore the initial 
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state P '  induces in a natural way the evolved state P( at the microtime ~-. 
The additional conditions on the initial states {pc, e > 0} for the hydrody- 
namic limit are the following. Let k(e~(q,v) denote the first correlation 
function of the state P '  (i.e., the density of particles with velocity v at the 
point q). The main assumption is the existence of the hydrodynamic initial 
condition, i.e., of a function go(q, v), smooth in q, such that 

l imk(P(e-lq,  v) = go(q,v), q,v ~ R ~ 
~---~0 

go has the meaning of a macroscopic mass distribution (in the rescaling 
process the particle mass can be assumed to be equal to e). Moreover we 
assume that the states P" possess some property of decay of the correlations 
at large distances. One might formulate the hypothesis that without an 
assumption of this type it is in general impossible to obtain a universal 
hydrodynamic picture, independent of the choice of the initial states. The 
particular form which this assumption takes in our paper is connected with 
the technique of the proof, and is a law of large numbers for some 
nonlinear functional on the phase space, which should be satisfied uni- 
formly in e. To convince the reader that such a condition is not too 
restrictive, we prove in Section 4 that it is satisfied by a large class of Gibbs 
states. 

Let k(e~),, denote the first correlation function of the evolved state 
P~-'t. The main result of our paper consists in proving that the following 
limit exists: 

limk(e!)~,(e-lq, v) = g(q,v, t) ,  q,v, t  ~ ~1 
~-- )0  e -  

and that the limit function g(q, v, t) is, under some general assumptions on 
the initial condition go(q, v), the unique solution (in some class of functions) 
of the equation 

~---~ g(q, v, t) + v g(q, v, t) 

• lady'  (v - v ' )g(q,v ' , t )}  = 0 (1.1) 

with the initial condition g(q,v,O)= go(q,v). This equation has to be 
considered as the analog of the usual Euler equation for our model. 

Equation (1.1) is known to physicists, and in "physical terms" it is 
easily derived (see Ref. 7). In order to get an intuitive guideline we give 
here in some detail a heuristic derivation of it which clarifies its physical 
sense. It is convenient to pass to a modified picture of the motion, in which 
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the colliding rods exchange their positions and keep their velocities, so that 
in the new picture each particle travels with constant velocity, but from 
time to time makes jumps of length d forward or backward. 

Microscopically g(q, v, t) dv is interpreted as the average density of the 
particles with velocity in the interval (v, v + dr), at the macroscopic point 
q, and at the macroscopic time t. The corresponding total particle density is 
given by 

t) = s dv g(q, v, t) og(q, 

and the average distance between particles "at the macropoint q" is given 
by [1 - dog(q, t)J[Og(q, t)]-~. The probability that the first particle to collide 
with a particle of a given velocity v has a velocity in the interval (v', v' + 
dv') will be [g(q,v',t)/oa(q,t)]dv'. Since the relative velocity is v - v', the 
probability that such a collision takes place in the time interval (t, t + dt) is 

[1 - dog(q,t) ]- 'og(q,t)[ g(q,v ' , t ) /og(q, t )  ]lv - vqdv' dt 

= I1 - dog(q, t )]- 'g(q ,v ' , t ) lv  - vqdv'dt  

Therefore the average velocity with which a particle with velocity v 
moves is 

~(q,v,t)  = v + d[1 - dog(q,t) l - l  f~dv ' ( v  - v ')g(q,v' , t)  

Therefore the "volume element" of the "hard rod fluid" with velocity v 
which at time t is in the interval (q, q + dq), will be at time t + dt in the 
interval [q + ~(q,v,t)dt, q + dq + ~(q + dq, v,t)dt]. Taking into account 
the law of mass conservation we find the equality 

g(q,v , t )dq = g[ q + ~(q,v, t)dt ,  v,t  + at] 

• [dq + ~(q + dq, v, t)dl  - ~(q,v, t)dt]  

which, taking into account only the first-order terms, gives the equation 

3 t )+g(q ,v , t )a -a~-4v(q ,v , t )+v(q ,v , t )~qg(q ,v , t )  0 0-7 g(q' v, ^ * = 

which is equivalent to Eq. (1.1). 
The paper is organized as follows. In Section 2 we give the necessary 

preliminary facts. Section 3 is devoted to the study of the limit equation 
(1.1). We prove there an existence and uniqueness theorem. In Section 4 we 
prove a theorem of convergence to the solution of Eq. (1.1) under the 
hydrodynamic limit procedure. In Section 5 we give examples of families of 
initial states for which the conditions of the convergence theorem hold. 
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The results of this paper have been announced in short notes. (8'9) The 
proof of the results on the equation of higher order announced there will be 
published in another paper. 

2. NOTATIONS AND PRELIMINARY FACTS 

In this section we introduce the basic notations and facts. A more 
detailed account of the topics touched here can be found in Ref. 3. 

By 7} and ;~ + we denote, respectively, the integers and the nonnegative 
integers. By R1. and R1_ denote the nonnegative and negative real numbers. 
R1 = •1 U { + ~ ) is the extended real line and Rl+ = ~1+ U { + oo ) is its 
positive part. If A is a finite or countable set we denote by IAI its 
cardinality. If I is an interval, we denote by I II its length. Given a set 
A c W, we denote by 8A its boundary, and by A c its complement R%A. 
Given two subsets A,B C W we denote their distance by dist(A,B) 
= infxEA,yEB II x - y I I "  For A C W and x E ~" we set x + A = {y ~ W : 

y - x ~ A } ,  and, for A C W  and t E N l \ ( 0 } ,  t A = { y E W : t - ~ y E A } .  
Throughout this paper we set e x p ( - o o ) =  0, - l o g 0  = + 0% and a + ~z 
= +oe for a n y a ~ R  1. 

The letters N and M denote the configuration space W and the phase 
space N" x W of a u-dimensional classical particle, v = 1, 2 , . . . .  A point in 
N is denoted by q and in M by (q, v), q being the particle position and v the 
particle velocity, respectively. If C c W we denote by M(C) the phase 
space C x W of a particle in the "volume" C. Here and in the following all 
subsets of W and of W •  W which we introduce are supposed to be 
measurable. 

Let #U (resp, .X/) denote the collection of subsets Y c N (X c M) 
such that for any bounded C c W the intersection Y N C (X N C x W) is 
finite. #U is considered as the configuration space and ~ "  as the phase 
space of a locally finite particle system in W. A point Y ~ #U (resp., 
X ~ ~ ' )  is called a particle configuration (realization) in W. Given Y E #U 
(resp., X E ~ ' )  we shall often call the points q ~ Y [(q,v) E X] "particles" 
of Y (X). The empty set, regarded as a point of ,/U (J{) ,  is denoted by @, 
and is called the vacuum configuration (realization). 

For x @ ~ we define the space translation Sx on JY (resp., ~ )  by 

s x r = { q e N : q - x ~ r }  (S~X=((q ,v )  E M : ( q - x , v ) ~ X } )  

(2.1) 

G i v e n C c N ( r e s p . , D  C M ) , w e s e t  Yc = Y A C, Y ~ ~ /  (X n = X N D, 
X ~ Jr ') .  By J U ( C )  [ resp . .~(C)] ,  C C W we denote the configuration 
(phase) space of a particle system in the volume C: 

{ r  : Y= r e }  
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Let JU ~ (resp. j #0 )  denote the collection of the finite subsets of N 
(M). If C c NP is bounded, then v U ( C )  c JU  ~ [resp. ~ ' ( C )  c ~.o].  #Uo 
(resp. ~ "  0) can be written as a union 

0 ( 00) M/~ -- N. j ( o  = 34. (2.2) 
n = 0  

where No(Mo)-- {O} and iV. (M.), n > 1, is the collection of the n-point 
subsets of N (M). Clearly, N 1 (resp. M 0 can be identified with N (M), and 
N. (M.), n > 2, with the image of the set 

n _ N r  {(ql . . . . .  q.) E N" : qi =/= qj for 1 < i < j  < n} 

( M ; =  {[(ql,v,)  . . . . .  (q.,v.)] M": 

(qi ,vi) va(qj ,vj) for 1 < i < j  < n}) 

under the symmetrization map I-I. : 

The usual topology on N" (resp. M"), n > 2, induces, via the map I I . ,  
a topology on N. (M.). The Borel o algebra of subsets of N. (resp. M.) is 
denoted by g'. ( .~.) .  The Lebesgue measure m" (resp. l ' )  on N" ( M ' )  
induces, via 1-I., a measure on (N., •.) [(M., _@. )], which we denote by m. 
(l.): 

1 m"(II; 'A) ,  A E ~,. m.(A)  = -~. 

For n = 1 we have El  = -~ (resp. -~l = 2 )  and m I = m (l 1 -- l), where 
and m ( 2  and l) are the Borel o algebra of subsets of N (M) and the 

Lebesgue measure on ( N , ? )  [(M,_@)], respectively. For n = 0 we set m o 
(No) = l [ /0(M0)= 1]. 

Let { G~, ~-~ R l } be a family of nonnegative measures on the space 
(M, ~ )  taking finite values on M(C)  for any bounded C c ~". We say that 
G~ converges to a measure G in the vague topology as ~--~ T o (T 0 can be 
+ ~ )  if for any bounded C c R ~ and any bounded continuous function 

f :  M--)~1 with support in M(C)  

lira (" G~(dq x dv) f (q ,v )  = f i G ( d q  x dv) f (q ,v )  
"r~'ro JM 

In case G is absolutely continuous with respect to 1, this is equivalent 
to the fact that for any bounded parallelepipeds I, J c R" with the edges 
parallel to the coordinate axes 

l i ra  x ] )  = c ( / x  J)  
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The space J U  ~ (resp. ~ ,0)  is equipped with the topology of the 
topological sum with respect to the representation (2.2). The Borel a 
algebra of subsets of ~A/~ (resp. ~ /0)  is denoted by 920 (~0). The induced 
"Lebesgue" measure on (VU~ ~ [resp. (~/0,  ~o)] is denoted by/~(X): 

I~(A) = ~ mn(A n N.),  A ~92o 
n=O 

(2.3) 

The measure element of IZ (resp. X) in integrals with respect to this 
measure will be simply denoted by dY (dX). 

Given a bounded C c W, consider the a algebra 92(C) = (A C # U ( C )  
: A ~ 92 ~ [resp. 932(C) = {A C_ ~ / ( C )  :A E 9)2o}]. Denoting by w c the 

projection map Y ~ J ! / ~  Yc (resp. X ~ ~ / ~ X c x a ,  ) the o algebra 92c 
-- {TrclA :A E 92(C)} [ ~ c  = (~rclA :A E 9X(C))] of subsets of J U  ( ~ / )  
is isomorphic to 92(C) [~(C)] .  We denote by 92 (9)2) the smallest o algebra 
of subsets of ~ (~r containing 92c ( ~ c )  for any bounded C C W. If 
C c W is unbounded we denote by 92c (gXc) the smallest o algebra 
containing 92c' ( ~ c ' )  for any bounded C' c C. 

For E c_ N (resp. E C_ M)  and n E 7/+ we set 

A E , , = ( Y ~ / : I Y n E [ - - n }  ( A E , , = ( X ~ e ' : I X n E I - - n } )  

Consider the topology of ~ (resp. ~ / )  in which a fundamental system 
of neighborhoods of a given point Y (X) consists of the sets Ac, n (Ac• 
where C C W is an arbitrary bounded set (and B C_ W is an arbitrary set) 
such that Yoc = 0 (Xo(c• = O) and where n = ]Ycl (n = IXcxBI). It is 
well known (see, e.g., Ref. 10, Chap. 1.15) that J U  (resp. I / )  is a polish 
space and 92 (g)2) is the Borel o algebra with respect to this topology. 

An equivalent definition of the o algebra 92 (resp. ~)2) is that 92 (9)2) is 
generated by the family of random variables 

(c : Y  E J / / +  I Yc[ ((C• : X  E~'-->IXcxB] ) (2.4) 

where C c W is an arbitrary bounded (and B C R ~ is an arbitrary) set. 
Similarly, 92c (resp., 932c) is generated by the family (~c'} (((C'• where 
C' c C is an arbitrary bounded (and B' C W is an arbitrary) set. 

Detinilion 2.1. A probability measure P on ( i F ,  92) [resp. (~ / ,  ~ ) ]  is 
called a configuration (phase) state of a locally finite particle system in W, 
or, shortly, a c state (state). The expectation value of a random variable f 
with respect to P is denoted by Eel, the variance by Def = r-e( f - IF el) 2. A 
c state (resp., state) P is called translation invariant if for any A ~ 92 
(A E 9J~) and x ~ W 

P(S)r = P(A) (2.5) 
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Given a c state (resp., state) P, consider the measure Kp, on ( JK ~ 92 ~ 
[(~/o, ~o)] defined by 

Ke(A ) = f P(aY)  ~ xA(Y'), A E92 ~ 
Y ' C  Y : Y ' E J U  ~ 

X '  C_X : X '  E , ~  "~ 

(2.6) 

Definition 2.2. The measure K e is called the correlation measure of 
the c state (resp., state) P. The restriction of K e to (N,, r  [resp., (M,,  
f t , ) ] ,  n = 1,2 . . . .  , is denoted by K(f ) and is called the n-particle correla- 
tion measure of P. If K e is absolutely continuous with respect to/ ,  (resp.,)t) 
then the Radon-Nicodym derivative k e = dKp/dlz (kp = dKe/dTt ) is 
called the correlation function of P; the restriction of k e to N n (Mn) is 
denoted by k(f ) and is called the n-particle correlation function. 

Note that if a c state (state) P is translation invariant, then its 
correlation measure K e is also translation invariant: 

Ke(SxA ) = Ke(A ), A E 92~176 x ~ W 

In particular the 1-particle correlation measure Ke ~1) of a translation- 
invariant c state (state) P has the form 

K ( f  ) = a•m [ K(e ') = ae(m • Ke('))] (2.7) 

where the constant a e E N~ is called the (mean) particle density in the c 
state (state) P (and Ke (1) is a probability measure on N" which describes the 
1-particle velocity distribution in the state P). If, in the case of states, Ke (0 
is absolutely continuous with respect to /, then the 1-particle correlation 
function k(e 0 admits the representation 

k~ '~ (q, v) = aeE~ '> (v), (q, v) ~ M (2.8) 

where ]~(1)= d~(p1)/dm. 
In the general (non-translation-invariant) case the 1-particle correla- 

tion function k(e 1) of a state P (if it exists) may be represented in the form 

k(e ') (q, v) = ae (q)/7(e ') (q, v), (q, v) ~ M (2.8') 

where a e is a function R1-~ ~1+ and/7(e0 : M ~ N~+ is such that f~, k(p~ v) 
dv = 1. The value ae(q) and the measure with density (with respect to dv) 
/7(p~)(q, .) are interpreted, as above, as the particle density and the 1-particle 
velocity distribution at the point q, respectively. 

Let P be a c state (resp., state) and C c W a bounded set. The 
restriction of P to 92c (resp., ~92c) induces, via the map ~r c, a probability 
measure on [A/~(C), 92(C)] [ t / ( C ) ,  93~(C)] which is denoted by Pc and is 
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called the local distribution of P in the volume C. A c state (resp., state) P 
is said to be locally absolutely continuous with respect to/~ (X) if, for any 
bounded C c R p, Pc is absolutely continuous with respect to/~ (X). It is not 
hard to see that if P is a locally absolutely continuous c state (resp., state), 
then K e is absolutely continuous with respect to /L (resp., X) and the 
correlation function k e is given/~-a.e. (X-a.e.) by 

a Jr(c) ~/(c) 

where C c N" is a bounded set, Y ~ J U ( C )  IX ~ ~ ' ( C ) l  andp~ c) denotes 
the density of Pc with respect to/ t  (h). 

Let P be an arbitrary c state (resp., state). Since J U  (resp., ~ ' )  is a 
polish space, for any o algebra 9~' c gt ( ~ '  c ~ )  the conditional probabil- 
ity P(.  192') [P(.  I~ ' ) ]  is regular (see, e.g., Ref. 11, Chap. 1, Section 3, 
Theorem 3), i.e., it can be considered as a family of c states (states) 
depending on Y ~ J U  (X ~ ~ ' ) .  For a given Y ~ J U  (resp., X E ~ ' )  we 
denote the corresponding c state (state) by Pvv,(" I Y) (P~v(" IX)). In the 
case 92'= 92cc (resp., ~J~'= 9)2c~xa, ) where C c E ~ is a bounded set, 
the local distribution P~,(. I Y)c (Pmv(" IX)c) is denoted by Pc(" I Y) 
(Pc(" IX)). Such measures play a fundamental role in the definition of 
Gibbs states, which we now briefly recall. 

Definition Z3.  A configuration potential, or, shortly, a c potential 
(resp., a phase potential, or, shortly, a potential) is a measurable function, 
' I ' : J U ~  1 ( O : d { ~  1) such that q ' ( O ) = 0  (q~(O)= 0). Given a c 
potential ,I, (resp., potential q)), we denote by xI'(") (q5 (")) its restriction to 
N, (3/,), n > 1. To any c potential "It (resp., potential r  we associate the 
energy H'~ : J / ~  1 ( H e  : ~ ' ~  l) given by 

H * ( Y )  = 2 l~(y,), y ~ ~ / o  
r'c_ r (2.9) 

[ H o ( X ) = x ' c _ x  ~ O(X'), X ~  "~ 

Let C c N p be a bounded set. The conditional energy of a configura- 
tion y ( l ) ~ J U ( C )  [resp., realization X (l) ~ ' ( C ) ]  with the external 
condition y(2) ~ J U ( C  o) [X(2) E ~ ' ( C ~  is defined as the limit 

= l i ln  H'~(Y(1) I Yt(c2t) 

= lira H'~(X(1) IXI(21)) 
(2.10) 

where I (') denotes the cube {x = (x 1 . . . . .  x ~) ~ N":lxJ[ < s, 1 < j  < v} 
and, for any pair of finite configurations Yo, Y6 ~ J U ~  (realizations Xo, X6 
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~g0), 

H~(Yol ra = ~_ ~(f) 
IT"C~ Yo U Y6 : YN Yo~O 

(2.1o3 

Hr176 2 C XoUX6~:2nXo~O 
Denote by JUc ~ (resp., ~ ' c  ~) the set of all Y ~ JU (X E ~ ' )  such that 

the conditional energy H'~(Ycl Yc c) [Hr215215 exists and is 
finite. 

Definffion 2.4. We say that P is a Gibbs c state (resp., Gibbs state) 
with c potential ,tt (potential O) if for any bounded C c R', 

(i) P(JUc ~) = 1 (P(~ /c  r -= 1), 
(ii) for P-a.a. Y E JU (X E ._s the following integral exists: 

E'~(Y)=( dY 'exp[-H*(Y ' ]Yc)  ] 
J~(c )  (2.11) 

(N~(X) = ~  dX'exp[-H'~(X'lXc~x~)]) 
a~(c)  

(iii) for P-a.a. Y E JU (X ~ ~ )  the measure Pc(" [ Y) [Pc(" IX)] 
coincides with the probability measure G(~'c)( �9 [ Yc) [G(r [Xc~xa")] 
given by 

G(~'C)(A I Yc ) = Z~(Y)-~ f dY ' e x p [ -  H'r'(Y'[ Yc )], A ~ ~t(C) 

(2.12) 

• A E~J~(C)) 

From the definition of the Gibbs c state (resp., state) it follows 
immediately that P is locally absolutely continuous and hence, the correla- 
tion function k e exists. 

There is a convenient formula for the correlation function k e of a 
Gibbs c state (resp., state) P: 

kp(Y)=exp[-H~(Y)]l~e(Y), Y E J  ~ 
(2.13) 

(ke(X)=exp[-H~(X)]k~(X),  X E ~  "~ 

where 

k~e(Y)=( P dY exp - j ~  ( ) [ w ~ ( r , f ) l  

(/~e (X) = (a~ (P dff ) exp [ - W'~(X,)~) ]) 
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and W~( Y, }') = H'I'( YI Y) - H'~( Y) ( W+(X,)() = H+(X ] )~) - H+(X)). 
The measure G('I"C)( �9 I Y), Y ~ JU(Co) (resp., G(r  �9 IX), X 

~/(CC)) is called the conditional Gibbs measure in the volume C with 
the c-potential qr (potential ~5) and the external condition Y (X). It will be 
convenient to introduce the c state (resp., state) [i.e., the probability 
measure on (JU, ~)  ((J~', ~2))] which is concentrated on the set ( Y E JU  : 
I7cc = Y} ({X E . .dt':XccxRo--X}) and whose local distribution in the 
volume C is G('~'c)( �9 I Y) (G(e'c)(" IX)) �9 This state is called the condi- 
tional Gibbs c state (resp., state) in the volume C with the c potential 
(potential (I)) and the condition Y (X). We denote it again by G(*'c)( �9 I Y) 
(resp., G(e'c)( . IX)). The Radon-Nikodym derivative with respect to the 
Lebesgue measure/ ,  (resp. X) of the restriction of the correlation measure 
Ka(~'c~( I Y) to J (C) (Ka(~.c) (. IX) to ~ /  (C)) is denoted, as above, by 
k~(.,r t Y) (ks(~~)(-IX))" In analogy with Eq. (2.13) one can write 

, I ,  ^ k c ( * . ~ ( . l f ) ( Y ) = e x P E - H  (Y)]k~(*,c,(. l f)(Y),  Y ~ . A / ~  
(2.14) q)  A 

(kc ( . .~ , ( .12) (X)=exp[ -H (X)]ka(.,c)(.12)(X), X ~ , o )  

In the second part of this section we expose some basic facts about 
hard rod dynamics. One of the main points is that it can be given in terms 
of the free dynamics, which we now define. 

Let us denote by ~ / '  the set of realizations X ~ ~ / s u c h  that, for any 
r ~ N ~, T~ E I / w h e r e  

T~ = {(q,v) ~ M :  (q - "re, v) ~ X }  (2.15) 

One can check that ~ " ~  9)2, and ( T  ~ r ~ R1} is a 1-parameter 
group of measurable transformations of ~g/' into itself. 

Definition 2.5. The transformation group ( T  ~ ~" ~ N l } is called the 
free particle dynamics. 

If a state P satisfies the condition P ( ~ " )  = 1, then the formula 

e~ = e ( r L ( A  n A �9 a '  

defines a family of states (po ,  ~. ~ Nt} which is called the free evolution of 
the initial state P (-- pO). 

From now on we assume v = l, and fix once and for all a positive 
number d, which will be the length of the hard rods. 

It is convenient to give a representation of the configuration Y ~ JU  
(resp., X ~ ~ / ) ,  which is based on the particle order. We introduce in the 
one-particle phase space M --- N 1 • R 1 the relation of lexicographic order by 
setting (q,v) > (q',v') if either q > q' or q = q' and v > v'. Let a E R ~ be 
fixed. For any Y E JU  (resp., X ~ ~ ' )  we set n(+")(Y) = I Y[~,+~r (n~)(X) 
= Ix[,,+~)xs,I) and n(")(Y) = IY(_~,,)l (n(_")(X) = IX(_~,,)xa,I). If Yv a 1~ 
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(resp., X@ | we can write Y = {q(a)(y), _[n(~)(y)  + 11 < j  < n(+a)(Y)} a ~J -- 
((#o,(f2, ,(x!l, 11 < j < where, > O, 

q(o)(Y) ((q(o)(X),v(o)(X))) is the lower bound of the set Y[~,+oo) 
(X[~,+~)xa,), if n(_ ~) > O, qgl(Y) ((qgl(X),vgl(X))) is the upper bound 
of the set Y(_ oo a) (Xr ~ ~)xa'), and qj!+)l(Y)> qr ((qr vr 
> (qj(a)(x),Dj(.a)(x))) for  '--" (F/g) "4- l)  < j  < F/(g)-  1. Clearly such a repre- 

sentation is unique. We shall call it the canonical representation of Y (resp., 
X) with origin in a. If a = 0 we shall drop the superscript (a) in the 
notation. 

Consider the sets 
~ 

~ , ' 2  = { x ~ ~ : ( q j + , ( x )  - d , % , ( x ) )  > ( q / X ) , , ~ / x ) ) ,  

- ( n _  + 1) < j  < n+ - 1} (2.16) 

~'fd ~--- {X  ~ ~ /  : q j + l ( X )  > q j ( X )  or d, - ( F /  or 1) < j  < n+ - I }  

(2.17) 

= + m and z / =  (x e ~ j  : i=0E [qJ+'(x) -  q / x ) -  el = + ~  ifF/+ 

1 ) 
~ [ q j ( X ) -  q j _ l ( X ) -  d] = + m  if n_ = - m  (2.18) 

Clearly .~'d + , l / a ,  ~ /d  + ~ ~ .  We shall call JZ/d + the phase space of a 
locally finite hard rod system. Note that colliding particles are prescribed to 
be in the outgoing position. For later purposes we introduce also the set 

#Ud = { Y E # U  :qj+1(Y)>qj(Y)+d,  - ( n  + l ) < j < n + - l }  

(2.19) 

which we shall call the configuration space of a locally finite hard rod 
system. 

For a given C c R ~ we introduce, in analogy with (2.16)-(2.19), the 
sets ~"d + (C), etc., which are the intersections of the previous sets with 
~ ' ( C )  or ./U(C). 

We describe now how hard rod dynamics can be given in terms of free 
dynamics. 

For any a E ~l consider the map D a :#U--> #U d (resp., ~---> Jga + ) 
defined by 

q f ( D a Y ) = q T ( Y ) + j d  , Y ~ J U  
(2.20) 

(qf(DaX) = qf (X)  +jd, q(D,~X) = vj(X), X ~ ,~{), 

- ( n _  + 1) < j  < n+ 
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If JU~ a) (resp., t / ~  ~)) denotes the image of #U ( ~ ' )  under D a it is 
easily seen that #U~ a) = { Y ~ #Ua : Y[a-a,a~ = O} (~/~a) = {X ~ J / ~  : 
Xta-d,a) xa' = 0}). The map D~ may be considered as a "dilatation" of the 
configurations (resp., realizations) around the point a. 

The inverse map for Da is defined on #U~ ~) (resp., ~ ' ~ ) )  and denoted 
by Ca. It is easily seen that 

qT(CoY) = qf(  Y)  - j d ,  

(q;(CaX)= q ; ( X ) - j a ,  
(2.21) 

v;(CaX) = vj(X), X ~ ~,'aa~ ), 

- ( n _  + l )  < j  < n+ 

The map Ca can be considered as a "contraction" of the configurations 
(resp., realizations) to the point a. 

For any X ~ I / a n d  (q, v) E X we set 

X~,v)('~ ) = {(q',v') ~ X : (q',v') < (q,v), (q + "~v,v) < ( q ' +  rv',v')} 

(2.22) 

X~.v)(.~) = {(q',~') < x :  (q',v') > (q,~), (q + .~v,,~) > ( q ' +  .~v',v')), 

r ~ R  l 

X~q,v)(r ) and X~q,v)(r) are the "subrealizations" of X consisting of all the 
particles whose trajectories intersect the trajectory of (q, v) from right to left 
and from left to right, respectively, in the course of the free motion up to 
the time r. 

Let ~ ' "  c ~ be the set of all X ~ I , '  such that IX~q,v)(r)l < + co and 
]Xffq, v)(r)l < + oo for any ~" E R1 and (q,v) E M. Consider further the set 
~ '~  defined by 

JZ~ = {X E l " j  ~ : CqX E Jg"  for any (q,v) E X } (2.23) 

Clearly, both ~ / " ,  Jz'{i E Ygk. Given X ~ ~ ' ~ ,  (q, v) ~ M and r ~ R1, 
we set 

where 

= ~(q ,X)  

= ~, 

q + d ,  

w,~ .... (q) = ~ +~v + an,:(q,v,.~) (2.24) 

if Xiq_d,q) = 0 

if IX[q_a,q)x~ I = I, X[q-a,q)xR' = {(~,g)} and g > v 

if IX[q_a,q)x~ I -- 1, Xtq_a,q)x~, = {(~,~)) and ~ < v 

(2.25) 

nx(q,v ,r  ) = n• (q,v,r) - n g  (q,v,r) (2.26) 
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and 

nx (q,v,.~) I(C~ x R �9 = + = )1, (2 .27)  

The meaning of the objects we introduced is the following. If (q, v) 
X the quantity nx( q, v, "r) gives the algebraic number of collisions of the 

particle (q, v) in the course of the motion up to time r. In the general case it 
gives the algebraic number of collisions of the "(q, v)-test particle" with the 
"real" particles up to time t. By a test particle we mean here a pointlike 
particle which moves inertially between collisions, jumps of + d when it 
collides with a real particle, without affecting the motion of the real 
particle, and at collision is prescribed to be in the outgoing position. 

Thus, for given X ~ d / j ,  v, ~ ~ R ~ we can consider Wx,y as a map 
~ ~ ~i. Given X E ~ / j ,  the family of maps w x ..... v ~ ~x, ~. ~ ~ i ,  has 
the following monotonicity property: if (q', v') ~ X, q' < q and v' < v, then 
Wx,v,~(q' ) ~ Wx, v,~(q) for all ~- ~ R1+. Likewise, if (q", v") ~ X, q" > q and 
v' > v, then Wx, v,,,~(q") > Wx, v,~(q) for all ~- ~ ~+ .  

Defini t ion  2.6. The hard rod dynamics, ( T  d, r ~ ~1}, is defined on 
~ / j  by 

TflX = {(q, v) ~ M :  q = w x .... (~) for some (~,v) E X ) (2.28) 

The motion of a single hard is given by 

(q,v)  ~ X--->[w x .... (q) ,v] ,  ~. ~ ~1 (2.29) 

The following assertion immediately follows from the arguments developed 
in Ref. 3 (see Ref. 3, Section 7, Propositions 7.2 and 7.3): 

L e m m a  2.1. For any X ~ dr ' j ,  ~- ~ R ~, and (q0, %) ~ X the realiza- 
tion TflX is given by 

Tdx  = Sb D qo +r176 (2.30) 

where 

b = d.  nx(qo,%,~r) (2.31) 

Furthermore, T~X ~ ~ ' j  and the family {T if, ~- E ~1) is a one-parameter 
group of one-to-one transformations of ~/{j onto d { j .  

Defini t ion  2 .7 .  Given  a state P such that P ( ~ j )  = 1, we  define the 
hard rod time evolution { P~, z ~ R 1) by 

e , ( A )  = n A R' (2 .32)  
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3. AN EXISTENCE AND UNIQUENESS THEOREM FOR THE 
LIMIT EQUATION 

This section is devoted to a theorem of existence and uniqueness for 
the solution of Eq. (1.1). We study here the following Cauchy problem: 

1 
•163 (q ,v)~M,  t ~R '  (3.1) 

with the initial data 

g(q,v,0) = go(q,v), (q,v) ~ M (3.2) 

Given a function f on M and a ~ R 1 we denote by S , f  the translated 
function: 

Sof(q ,v)=f(q-a ,v) ,  (q,v) EM, a ~ R  ~ 

Definition 3.1. We denote by ~/~ the class of nonnegative measur- 
able functions q0 : R 1 ---> R~+ such that 

fjv, (v) < oo, fjvlvl (v) < 

Definition 3.2. Let q, ~ J .  We denote by Y~ the class of nonnega- 
tive measurable functions f :  R I ~  R 1 such that 

(i) for any fixed v E R 1 the function f ( . ,  v) E C 2, 
(ii) for any (q, v) ~ M 

max[f (q ,v) ,  I(~/~q)f(q,v)l ] <<. ~(v) 
Denote by J -  the union U + E s J -~ .  

Given f ~ J - ,  we set 

af(q)= f~dv f(q,v), gf(q)= fadvvf(q,v), q ~ N  '~ (3.3) 

Using the dominated convergence theorem it can be seen that the 
functions .of: R 1 ~ W+ and ~'f: R l ---> ~1 are of class C 1. If f ~ g-~0, then for 
any q E ~1 

max[ of(q), I(d/dq)os(q)i ] < fjv,v (v) (3.4a) 

max[l~'f(q)l, I(d/dq)gf(q)}] <lady Ivl,~(v) (3.4b) 

In what follows we set ~f = SUpq~R1 of(q). 
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the map 

(3.5) 

Hence, g ~ J~ with ~(v) = +(v)[1 + dfR, dv'4,(v')] -1, v ~ ~ .  

Definition 3.6. Let g ~ if, qo ~ N~- We denote by Bg,q ~ 
~] ~ ~1 given by 

d('qda 'o (a'~, ~ ~] B~,qo(q )=  q -  dq ~ -1 g,-~ , q 

One can see that for any g ~ d and qo ~ ~ 

0 < 1 - d~g < (d/dq)Bg, qo(q) < 1, q ~ ~ 

and hence, Bg,qo is a diffeomorphism of R] onto itself. 

Definition 3.7. Let g ~ J ,  qo ~ [E]. We set 

(Bqog)(q,v) = g((Bg, qo)-~(q),v)[1 - dos((Bg,qo)-~(q)) ] - ' ,  

q E R  ] 

(3.7) 

the map 

(3.s) 

(q,v) E M 

(3.9) 

Definition 3.3. Let f ~ g- ,  q0 ~ R1. We denote by Af, qo 
R 1 ~ N] given by 

dfoqd, ' o ' ,  q ~ R  ] Af'q~ = q + _o q f(q ) 

It is easily seen that if f E 3-~,  then for any qo ~ R] 

l<NAf, qo(q)<l+ flv(v), q S' 
and hence, ALq ~ is a diffeomorphism of N ] onto itself. 

Definition 3.4. Let f ~ 3 - ,  q0 ~ R~. We set 

(Aqof)(q,v) = f((A/,qo)- '(q),v)[1 + dof((Aj;qo)-'(q)) ] -1, (q,v) E M 

(3.6) 

Definition 3.5. Let ~p ~ g- ,  r ~ [0,d-~), and let J+,r denote the 
class of functions g ~ ~-+ with ~z < r. We denote by J~ the union 
UrE[o,d ') Jr and by c4 the union [ , . J ~ J ~ .  

Proposition 3.1. For any f E 3 -  and qo E N] the function Aqo f is in 
J .  Hence, Aqo is a map 3 - ~  J .  

Proof. Let f E ~-~. Setting g = Aqof and ~ = Af, qo(q), q ~ ~ ,  we 
have 

og(q) = of(~)(1 + dof(~)) ' < ;~dv~(v)[1  + d fRdv' ~(v') ] - ' ,  
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Proposit ion 3.11. For any g ~ J and qo ~ R~ the function B%g is in 
Y .  Hence, Bqo is a map cr ~ .  

Proof. Let g ~ J~ .  Then Bqog ~ Y r  with rp = ~(1 - d~g) -~. II 

Some comment on the objects introduced so far is in order. For the 
"mechanical" intuition a function f ~ 3 -  may be considered as the density 
of mass of a fluid on the line R 1. This "fluid" is actually composed of 
different "fluid species," labeled by the velocity v. The total mass density 
and the total momentum density of the fluid at the point q are given by 
of(q) and ~f(q), respectively. The map Af, qo is a dilatation of the line around 
qo: each point q is shifted away from qo, at a distance which is equal to d 
times the total mass of the fluid between q0 and q. Aqo f is the mass 
distribution of the stretched fluid. Intuitively dilatation is obtained by 
letting each fluid element acquire an additional volume which is d times its 
mass. Therefore Aqo can be regarded as a transformation which for any 
mass distribution of a fluid of pointlike particles gives us a corresponding 
distribution of a fluid of hard rods with length d. The map Bqo describes the 
converse operation, by which we contract the fluid. 

The maps Aq0 and Bq0 can be considered as the continuum analogs of 
the transformations Dqo and Cqo given by Eqs. (2.20) and (2.21). 

The main properties of the maps Aqo and Bq0 we need below are given 
in the following proposition. 

Proposition 3.111. (i) L e t f  ~ Y (resp., g ~ J ) ,  qo E ~ and g = Aqo f 
( f  = Bqo g). Then Bg, q ~ = (Af, qo )-l .  

(ii) For any qo ~ R' the map Aq0 is a bijection of J -  onto J and 

Aq- ol = Bqo. 
(iii) For any f ~ ~-  and a, qo, ql ~ RI: 

(iv) 

where 

where 

SaAqof = Aq S J  (3.10) 

- A - l  b = q, ( q , -  a) 

For any g E J and a, q0, ql E R 1 

SbBql g = BqoSag 

b= B&g, qo(ql+ a)-- qL 

(3.11) 

(3.12) 

(3.13) 

Proof. (i) Let f E ~- ,  g = Aqo f. Evidently, Bg,qo(Af, qo(qo) ) -~ qo- 
Therefore, to prove the inequality Bg, q ~ = (Af, qo)- l it is enough to cheek that 
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the derivative 

(d/dq)Bg, qo(Af, qo(q)) = [ (d/dq)Af ,  qo(q) ] [ (d/dq)Bg,  qo(q)[~=Af, qo, q,] 

= [ 1  + dof(q)]{ l - dog(Af, qo(q)) ) 

is identically 1. But this follows from the equality (3.7). B 

The proof of the equality Bg, q ~ = (Af, qo ) -  ~ for g ~ W and f - -  Bq0 g is 
similar. 

(ii) Let again f ~ J - ,  g = Aqo f. Let f '  = Bqog. Using Definition 3.7 
and assertion (i) we have 

f ' ( q , v ) = g ( A f ,  qo(q) ,v ){1-dog[Af ,  q(q)]}  -1 (3.14) 

From the equality (3.7) we find 1-dog(Af ,  qo(q))= {I + dog(Af, q(q))} -1 
whence, substituting into (3.14) and using Definition 3.4, we get f ' =  f. 
Therefore Aqo : ~ --> J is an injection and Bqo : J ~ J "  is a surjection with 
Aqo t = Bqo. In a similar way we can prove that Bq0 is an injection and Aqo is 
a surjection with B~o ~ = Aq0. 

(iii) Let f E Y .  Given a, qo, q~ E R 1, let b be defined by (3.11). Set 
f(b~ = Sbf. From Definition 3.4 we see that (3.10) follows from the equality 

(Af, q o ) - ' ( q -  a)=(Ahb>,q,)- l(q)  - b, q ~ E  I (3.15) 

From Definition 3.3 it is easy to see that the right-hand side of (3.15) 
coincides with q(b) = (Af, q _ b ) - ~ ( q _  b), and therefore (3.15) is equivalent 
to 

q - a = q(b) + d((e>dq, of(q,), q E Nl (3.16) 
"qo 

It is convenient to write the left-hand side of (3.16) in the form 
( q -  b ) +  ( b -  a) and regard both sides of (3.16) as functions of the 
variable q(b) ~ ~ .  It is evident that the derivatives of both sides in q(b~ are 
the same; hence, to prove (3.16), it is enough to check it [or, equivalently, 
(3.15)] for q = ql. But for q = ql Eq. (3.15) coincides with Eq. (3.11). 

(iv) The proof of (iv) is similar to that of (iii). The only difference is 
that the equation 

(Bg+) - l (q  - b) = (Bg,,>,qo)-'(q) - a, q ~ E l (3.17) 

which is the analog of Eq. (3.15) with g(a) = Sag, should be checked for 
q = q ~ + b .  

Our proof of the existence and uniqueness theorem will be based on an 
explicit construction of the evolution of the density of mass. One of the 
main tools is again free evolution. 
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Definition 3.8. Given f E J - ,  its free time evolution ( T~ t ~ ~1 } is 
defined by 

T,~ = f ( q  - vt, v), (q,v) ~ M (3.18) 

It is easy to see that for any f ~ J -  Tt~ ~ Y-  for all t E R~. 
We now construct the motion of the points (or "elements") of the hard 

rod fluid. Given g ~ if, (q,v) E M, and t ~ ~z, we set [compare with Eqs. 
(2.24)-(2.27)] 

ug.~,,(q) = q + tv + dm~(q,v,t) (3.19) 

where 

with 

mg(q,v,t) = m~- (q,v,t) - mg (q,v,t) (3.20) 

m~ (q ,v , t )=  (q dq' foo dr' fq(q',v') (3.21,-- 
d - o o  d v + t - i ( q - q  ") 

fq = Bqg (3.22) 

Lemma 3.IV. For any g ~ J and v, t E R 1 the map ug.~., : R~ ---> ~1 
given by (3.19)-(3.22) is a diffeomorphism of R1 into itself. Furthermore, 
for any (q0, v0) ~ M the following formulas are true: 

u~,~,,(q) = B~,qo(q ) + tv + dm~(qo ,Vo, t) + d~e~.qo(q)+t~dq' orofo(q'), 
qo + tvo 

q ~ ~l (3.23a) 

and 

(d/dq)ug,v,t(q) = [1 - dog(q)](1 + dav,~(Bg,qo(q) + vt)), q E ~  1 

(3.23b) 

where fo = fr = B eo g" 

Proof. Let g ~ J .  It is convenient to rewrite the quantity rag(q, v, t) 
defined in (3.20), (3.21) in the form 

m~(q,v,t) =s ' fq(q',v'), (q,v) E M (3.24) 

Using Definition 3.7 and assertion (iv) of Proposition 3.III, we obtain from 
(3.22) that for any q0 ~ Rf and all q ~ ~l 

fq(q',v') = fO(q,_  q + Bg,qo(q),v,), (q',v') ~ M 
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Hence, (3.24) is equivalent to 

mg(q,v,t) = f~dv' foO+(~-~')'dq' f~ (q,v) E M (3.25a) 

where ~ = Bg, qo(q). From Definitions 3.6 and 3.7 it is easy to see that 

?] = q - d fqq~dq' ofo( q') (3.25b) 

Now using (3.25a, b) it is not hard to check that the right-hand side of 
(3.23a) coincides with that of (3.19). 

From (3.19) and (3.25) we find 

(d/dq)ug,~,,(q) = 1 + d[ or,0yo(~ + tv) - af0(O) ] d~/dq (3.25c) 

According to the equality (3.7) and assertion (i) of Proposition 3.1II, 
ap(4) = og(q)[1-  dog(q)] -1. According to Definition 3.6, d~/dq= 1 -  
dog(q). Hence, the right-hand side of (3.25c) coincides with the right-hand 
side of (3.23b). [] 

Corol lary 3.7. For any g E J the maps ug,~,,,v,t E ~1 have the 
following monotonicity property: 

Ug,v,,,t(q" ) >/ Ug, v,,t(q' ) if q"/> q', v"/> v', for all t >/0 (3.26) 

Proof. An easy check is one based on the representation (3.23a). [] 

The application 

(q,v)~(ug,~,,(q),v), t ~ ~ (3.27) 

gives the trajectory of a point in the fluid. The motion of the fluid points 
can be seen as a composition of the free motion (q, v)--> (q + vt, v) and a 
space shift q ~  q + dmg(q,v,t), mg(q,v,t) is the mass of the fluid which 
crosses the trajectory of the fluid point (q, v) from right to left, minus the 
mass which crosses from left to right. A comparison with Eqs. (2.29) and 
(2.24)-(2.27), shows that the motion of a fluid point (3.27) is the continuum 
analog of the motion of a single hard rod. 

If the points of the fluid of initial density g move according to Eq. 
(3.27), the density of mass of the fluid at time t will be given by the 
function @t g: 

~,g(q,v) u -1 d u-1 = g ( g , v , , ( q ) , v )  g,o,,(q) (3.28) 

Remark. Note, for later use, that, as it follows from Eqs. (3.19), 
(3.24), ug,~,t is smooth in v and in t, as well as in q, and that from Eq. 
(3.23b) it follows that for all g ~ J the same is true for ug.~ t. 
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We shall prove that the construction (3.28) does actually provide a 
solution of our problem in some class of functions, which we now make 
precise. 

Definition 3.9. We denote by ~ the class of the nonnegative 
measurable functions h : M X R 1 ~ R~+ such that 

(i) h ( . , v , . ) E  C l f o r a l l v ~ N 1 ;  
(ii) h(. ,  . ,t) E J~,r for some r ~ [0 ,d- l ) ,  some ~ ~ S and all t E R1. 
We shall sometimes write ht(q, v) instead of h(q,v ,  t) to stress that the 

function h is considered for a fixed value of t. 

Theorem 3,VI. Let go E J .  Then in the class ~f~ there is a unique 
solution, gt, t E  R 1, of the Cauchy problem (3.1), (3.2). This solution is 
given by gt = @t go, where @t go is given by Eq. (3.28). 

The key point in the proof of Theorem 3.VI is the following result. 

Lemma 3.VII. Let go E J .  Then for any (qo, Vo) ~ M and t ~ N 1 

@t go = S,,Aqo+ tvoT~ qo go (3.29) 

where 

a = dmgo( q, v, t) (3.30) 

Before going to the proof of Lemma 3.VII we make some comments 
on Eqs. (3.29), (3.30). They show that in order to get the density of mass at 
time t, we should fix an arbitrary point (qo,Vo)~ M, contract the initial 
density go around qo, submit the resulting mass distribution to the free 
evolution up to time t, then dilate around qo + tvo, and finally shift the 
result by dmgo(qo, v o, t). The evolution of the hard rod fluid is--not surpri- 
singly--a continuum variant of the hard rod evolution [see (2.30), (2.31)]. 

ProoL We set again f0 = Bqog 0 and gt = @tgo. Using Lemma 3.IV 
we get 

( d / dq)u~o)v,t( q) = [ ( d /  d~)ugo, v,t( ~)l ~=Uio.~,,(q) ] -1 

= ( 1 - aO~,o[U-' - [1 dor o~(O+vt)] ' + - ' ,  

where 0 = B~,qo[U~)v,,(q)l. Notice that 

AT ofO,qo+tvo( O + vt) = q - a, 

(q,v)  ~ M (3.31) 

(q,v) ~ M (3.32) 

where a is given by (3.30). In fact, from (3.20), (3.18) and Definition 3.3 it 
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follows that 

d[ mgo(qo, v, t) - mgo(qo, Vo, t)] 

= d ( dv' (q~ fO(q,, dfqO+t~dq, arofo(q,) 
J a  I Jqo+t(Vo-V') " t ) ' ) =  Jqo+tVo 

= AT,~,qo+,~o(q o + tv) -- (qo + tv) (3.33) 

Using (3.33) we see that (3.32) is true for q = Ugo,~,t(qo ). Because of (3.31) 
the derivative 

( a /  dq)Ar,~ (?t + tv) 

= (1 + darofo(4 + tv)){ 1 - da~o(Ug-o)v,,(q) ) }(d//dq)u~o)v,t(q) 

is equal to 1, and equality (3.32) is proved. �9 
Writing -1 - 1  * U~o,~,t(q ) = (Bgo,qo) (q) and using (3.28), (3.19), (3.31), (3.32), 

and Definition 3.7 we find that 

g,(q,v) = go((Bgo,qo)-'(O),v)( l - dago((Bgo, qo)- '(O)) ) - i  

x[  1 + do oA  + tv)]-'  

= f ~  + dot, of(4 + tv)]-1 

= T,~176 + tv, v)[1 + dor ofo(4 + t v ) ] - '  

o ot " qo+tvo ~J (q = Aqo+ tvoTtY ~.Ar,~176 '~o(q + tv), v) = A T ~176 - a, v) 

which coincides with the right-hand side of (3.29). 

L e m m a  3.7111. Let go ~ j and let ~Gg0 be defined by Eq. (3.28) [or, 
equivalently, by Eq. (3.29)]. Then (i) the function g(q,v ,  t )=  @,go(q,v) 
belongs to W ,  and (ii) the maps @t :gO ~ g~--~@tgo ~ J ,  t E ~1, have the 
group property, i.e., for all go ~ J and for all t o, tl ~ N1 

~,,  ~',o go = ~, ,  + to go (3.34) 

Proof. The first assertion follows immediately from the representa- 
tion (3.29) and Propositions 3.I, 3.II [see also the remark which follows Eq. 
(3.28)]. To prove (ii) we choose (qo, vo)E M and set f 0 =  Bqog ' ao = 
dmgo(q o, %, t). Furthermore we set ql = qo + tVo + ao, gl = @t, go, f l  
B q I gl, and a I = dmg,(q I , %, tl). According to (3.29) 

~,, go = S.oAqo+,ovoTt~176 @,,~,o go = S~,Aq,+t,voT,~f' 
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Now, owing to assertions (ii) and (iv) of Proposition 3.II1, 

f~=  BqSaAqo+tovoTt~ ~  SaBqo+tovoTt~ ~  SaoTtof ~ 

Next remark that 

[" ~ , [ ' q l + ( V o - V ' ) q j  i e l .  i mul(q, ,Vo,tl) = )~yv )q, aq j tq ,v') 

. ,  t'qo+(vo- v')(to+ tO.l_, 
= ( dv I "q f~  

j N I  Jqo + (Vo -- v')to 

and consequently 

ao + a 1 = dmg(qo,Vo,to + tl) 

Hence, owing to the mutual commutativity of the maps S~ and T, ~ and 
assertion (iii) of Proposition 3.111, 

@t~ @to go Sa,Aq,+t,voTt~176 o o = = S a A q o + ( t o + t O v o + a o S a o T q + t o f  

= v A TO r 
~ qo+( to+t l )Vo  t l + t o J  

which, according to (3.29), coincides with @tl + to go. �9 

Now we can give the first part of the proof of Theorem YVI. 

Proof of Theorom 3. VI. Existence. We shall show that the function 
g(q ,v , t )= @tgo, given by Eq. (3.28) is a solution of the problem (3.1), 
(3.2). The initial condition (3.2) is obviously satisfied. Furthermore, because 
of assertion (ii) of Lemma 3.VIII, in order to prove that Eq. (3.1) is satisfied 
by the function g for all t ~ ~1, it is enough to prove that it is satisfied at 
t = 0. We have 

(a /a t )g(q ,v , t )  

= ( J / a t ) [  go(u~olv,t(q),v)(d/dq)u~o,~,t(q)] 

= [(a/a~)go(Ti, v)[~=%,o,,(q~] [(a/Ot)Ugo,'~,t(q)l(d/dq)ugo,'~,,(q) 

+ U;o,'o,,(q), v l( a2 / at aq).io'v,, q) 
From (3.19)-(3.22) we find that 

(a/at)U~v,,(q)l,=o = - v  - d s  dv' (v - v')go(q,v')[ l - d%o(q)1 -~ 

(a/aq)u~,~v,o(q) = 1 

( C / a t  3q)Us q)l,=o -- - d(a / aq) fa,dv' (v - v')go( q, v')[1 - d%( q) ] -1 

so that Eq. (3.1) is satisfied. Furthermore g ~ ~ in force of Lemma 3.VIII. 
Existence is proved. �9 
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set 

( q , v )  ~ M,  

and consider the following Cauchy problem: 

( q*(t) = v ~ ( q * ( t ) , v , t )  

q*(o) q 

P r o o f  o f  T h e o r e m  3. VL Uniqueness. Given a function h ~ ~ ,  we 

v ~ ( q , v , t )  = v + d[1 - av' (v - v ' )h , (q , v ' ) ,  

t E R 1 (3.35) 

(3.36) 

Since h E ~ ,  it is easily seen that for any v E •1 the function v*(.,v, .) is 
continuous together with its partial derivative O/Oq v*( . ,  v, .) in the whole 
(q, t) plane. From the general theory of ordinary differential equations (see, 
e.g., Ref. 12, Chaps. II and III) it follows that for all (q, v) ~ M there is a 
unique global solution, q* = q~,q,~ of Eq. (3.36). Denote by U~.v, t the map 
q E Nl-~q~,q,v(t),  t E R 1. Then for all v , t  ~ ~1 U~,v,t is a diffeomorphism of 
R 1 onto itself. �9 

The uniqueness of the solution of the problem (3.1), (3.2) follows from 
the following lemma. 

Lemma :],IX. L e t g  0 ~ J and let h ~ Z(~ be a solution of (3.1), (3.2). 
Then for any v, t E R 1 

uff, v,t(q) = Ugo,v,,(q), q ~ ~1 (3.37) 

h (q, v, t) = go(u~,~,,l(q), v)(O/Sq)u~,~,tl(q),  q ~ R ~ (3.38) 

where Ugo,v, t is given by (3.19). 

The proof of Lemma 3.IX is based on the following auxiliary state- 
ment. 

l.emma 3.X. Let the conditions of Lemma 3.IX hold. Then 
(i) for any (q,v) ~ M and t ~ R 1 

h (U~,v,,(q), v, t ) (d/dq)u~,v , t (q)  = go(q, v)  (3.39) 

(ii) for any (q, v) E M and t E ~1 

Bq.(oh , = Sa, Tt~ (3.40) 

where q*(t)  = u*(q, v, t), a, = q*(t)  - q - vt. 

We first show how Lemma 3.IX follows from Lemma 3.X. Let go and h 
be as in Lemma 3.IX. Given (q , v )  E M and t E R l, we set q*(t)  = U~,v,,(q), 
f t  = Bq.(t)ht and f0 = Bqgo. Using (3.19)-(3.21) and assertion (ii) of Lemma 
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3.X we find from (3.35) that 

v ~ ( q * ( t ) , v , t )  = v + d fa ,dv '  (v  - v ' ) f t ( q * ( t ) , v  ') 

= v + d f a d v ' ( v -  v ' ) T ~ 1 7 6  + vt, v') 

= v + d(O/Ot)mgo(q ,v , t )  

Integrating in t and using again (3.19), we get (3.37). The relation (3.37) 
together with assertion (i) of Lemma 3.X imply (3.38). 

Now to prove Lemma 3.X we need the following result. 

I .emma 3.111. Let the conditions of Lemma 3.IX hold. Given (q0, v0), 
(q, v) ~ M, set q~(t) = U~,vo,t(qo), q*(t)  = Uh,v,t(q). Then the following equal- 
ity holds: 

Bh,,q~(o(q*(t)) -- Bgo,qo(q ) - vt - [ q~'(t) - qo - vot l  = 0 (3.41) 

Proof of Lemma 3.Xl. Integrating both sides of (3~1) in v we find 
that for all q, t E R 1 

(O/St)oh,(q)  + (~/Oq)fh , (q)  = 0 (3.42) 

which expresses the mechanical law of mass conservation. 
Now notice that for t = 0 the left-hand side of (3.41) is 0. Hence, to 

prove (3.41) it is enough to check that the derivative of the left-hand side in 
t is 0. Using Definition 3.6 we find that this derivative is 

v * ( q * ( t ) , v , t ) [ 1  - dOh,(q*(t)) ] -- v*(q~) ( t ) , vo , t ) [1  -- dOh,(q~(t)) ] 

+ d~q*(Odq ' (O/Ot)oh,(q')  + % - v (3.43) 
Jqt(t) 

Taking into account (3.42) and the equality v * ( q , v , t ) =  [ v -  d~h,(q)][1-  
dOh,(q)] -1, it is readily seen that (3.43) is equal to 0. �9 

P r o o f  o f  L e m m a  3. X. (i) Notice that Eq. (3.39) is obviously true for 
t --- 0. Hence it is enough to prove that the derivative of the left-hand side 
in t is 0. Setting q * ( t ) =  uff, v,t(q) and using Eq, (3.1) we find for the 
derivative 

[(O/Ot)h(q ,v , t ) [~=q.(O + (O/O~])h(f f] ,v , t ) l~=q.(t) l(O/~q)q*(t)  

+ h (q* ( t ) ,  v, t)[ O/OglV*(77, v, t )[#=q.(O](O/Oq)q*(t  ) 

= ({O/Oth(gT,  v, t) + O/Og I [h(gl, V, t)v*(fT, v, t)] ) l#=q.( , ))(O/Oq)q*(t)  

= 0  
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(ii) We set, as a b o v e f  t = Bq.(t)ht, fo = Bqgo. We must prove that for 
any (q, v) E M, t ~ ~ 

f t (q,  v) = fO(q _ vt - a,, v) (3.44) 

Since u~,v, t and Bh,,q~(O are both diffeomorphisms, their composition 
Bh,,q~(O(u~,v,t(.)) is surjective. Thus, we can replace q in both sides of (3.44) 
by Bh,,q~(t)(q*(t)). After this change of variables and using Lemma 3.XI we 
find that the right-hand side of (3.44) is equal to 

f~ ) = go(q ,v ) [1 -  dogo(q) ]-~ 

On the other hand, according to Definitions 3.6, 3.7, the left-hand side of 
(3.41) is equal to 

f(O(Bh,,q~(t)(q*(t)),v ) = ht(q*(t),v)[1 - doh,(q*(t)) ]-1 

Taking into account the equality 

(d/dq)ut*v,,(q) = [ 1  - dogo(q) ][1 - doh,(q*(t)) ] - t  

which holds, because of Lemma 3.X, we see that (3.44) is equivalent to 
(3.39). This proves (ii). II 

4. THE CONVERGENCE THEOREM 

Theorem 4.1. Let go E J (see Definition 3.5), and let (pc, c > 0} be 
a family of states such that 

(i) P ' ( ~ / ~ )  = 1 [where t / ~  is given by Eq. (2.23)] for all c > 0; 
(ii) for any c > 0 the 1-particle correlation measure Ke(! ) is absolutely 

continuous with respect to the Lebesgue measure l on M and the 1-particle 
correlation function k(e[ ) has the following properties: (a) for some q0 E J 
(see Definition 3.1), 

k(e!)(q,v) < cp(v), (q,v) ~ M (4.1a) 

and (b) 

(iii) 
decreasing functions, rtj,st,  J : R~ ~ 1 +  such that limu__,0 + r t j (u  ) = 
lim~_,o+Stj(u ) = 0, and for all e > 0, t ~ R 1 and (q,v) E •1 • j 

limk~!)(~-lq, v) = go(q,v), (q,v) E M (4.1b) 
~---~0 

for any t E R 1 and any bounded interval J there are two non- 

where n x is given by (2.26)-(2.27), (2.25) and rag0 by (3.20)-(3.22). 

pE[ (]r v , c - l t ) _  mgo(q,v,t) ] > d - l r t j ( Q )  ] < s t j (  Q (4.2) 
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Then, for any t ~ R l, the measure G: on ( M , . ~ )  given by 

G:(C  • B )  = ,K(~:)_~,(,-IC • B) ,  C ,B  C ~ 1  (4.3) 

converges in the vague topology as e-->0 to the measure G t on ( M , ~ )  
which is absolutely continuous with respect to l with a density gr = @t go 
given by Eq. (3.28) [which is by Theorem 3.VI the unique solution of the 
Cauchy problem (3.1), (3.2)]. 

Remark .  It is easy to see that assumption (iii) of the theorem is 
equivalent to the following one, which is easier to verify: 

(iii') for any 8 > 0 ,  t ~ R  t and any bounded interval J c R  l, the 
following relation holds uniformly in (q, v) E ~1 • j 

l i m P ' ( ( l e n x ( e - l q ,  v , e - l t )  - mgo(q,v,t)[)} ) = 0 (4.2') 
e - ~ O  \ k 

Proo f  o f  T h e o r e m  4.1. Let t E R ~ be fixed. For definiteness we 
assume t > 0 (for t < 0 the proof is similar). We should prove that for any 
set E c M such that E = I • J,  where I and J are bounded intervals, 

lira G : ( E ) =  ajaUgofdVf~,(l)dq g0(q,v) (4.4) 
e~>0 , ", 

where the map Ugo,V, t : ~ l ~  Rl is defined by Eqs. (3.19)-(3.22). 
The proof of Eq. (4.4) is based on a lemma which we give below. Let 

the intervals I = [q', q"] and J = [v', v"] be fixed. From now on we shall 
write r and s instead of rt j  and st,s, since t and J are fixed. Choose 
two nondecreasing functions fl ,8:RI+~N1+ such that limu__,o + f i ( u )=  
limu_~0 + 8(u) -- 0, and, moreover, 8(u) > r(u), u > 0, and limu_~o + ( f l (u))  - I  
s ( u ) - - 0  (it is clear that such functions exist). Set furthermore l ( e )=  
[(f l (e))- l (v"  - v')], where [ ] denotes the integer part, ](c) = 2(/(e) + 1) 
s(e), and I )  i ~ -  I )  t -1- ifi(e), J i  = [ / 3 i , 1 3 i + 1 ] ,  i --- 0, 1, . . . , l(r + 1. Furthermore 
we set 

1 - 1  t q~C(i) = e -  U~o,~,+~,t(q - 6(e)) (4.5a) 

1 - 1 : tt q~'( i )  = e -  Ugo,vi,ttq + 8(r (4.5b) 

- l u - 1  e / q~/'(i) = g:,  : (q  + 8( , ) )  (4.6a) 

q~'(i) -~ -' " '/ = ,  ugo, v,+,t( q - 8( , ) )  (4.6b) 

Owing to the monotonicity property of the maps ug v t, v ~ N1 (see Corol- 
lary 3.V), we obtain that for a n y ,  > O, q["(i)  < q~;ii)  and, i f ,  is small 
enough, q~/'(i) < q~'(i),  i = O, 1 . . . . .  l(,) + 1. Consider the intervals 

I, A(O = [qr  /e V(i) = [q~/ ' ( i ) ,q~' ( i )]  (4.7) 



One-Dimensional Hard Rod Caricature of Hydrodynamics 

and the sets 

l(~) I(0 
Et ,'~= U (I, A(i) X Ji), Et v ' =  U (I, v(OX 4) 

i=0 i=0 

605 

(4.8) 

Lemma 4.2. Under the assumptions of Theorem 4.1 there exists a 
m-measurable set ~ )  c ~ such that for any c > 0 (i) p c ( ~ / ~ \ ~ / j )  
< ](e), (ii) for any X E ~/fJ the following inequalities hold 

IX n E, Wl < ITd,,x n GI < Ix n E,~r I 

where Ec = 1` X J, 1` = r  11. 

Proof. Using the definition of the maps w x .... [see (2.24)-(2.27)] and 
Ug0,v, t [see (3.19)-(3.22)] and assumption (iii) of Theorem 4.1, we conclude 
that for a n y ,  > 0 and i = 0, 1 . . . . .  l(Q + 1 there exists an m-measurable 
set ~ , ~ , i ( + ) c ~ , ~  such that P~(~/,~\~/g,~,i(+))< s(0,  and for all X 
E ~ ' ,~ / (+  ) the following inequalities hold: 

[Wx,v,+,.,-,t(q(~'(i)) - e-'ugo,,~,+, .t(eq•'(i))[ < , - I r (e )  

[Wx,v,,,-',(q~"(i)) - "-lugo,v, .,(,q#~ < , -ar ( , )  

According to the definitions of q#'(i)  and q#'(i)  [see Eq. (4.5a, b)], 

E-lb/g0 ,vi+, , ' ( 'q(Xe(i))  "~" s  s  

'-lugo,v, ,t(,q~,,(i)) = , - lq , ,  + , -13( , )  

Hence, for a n y ,  > 0 and i = 0, 1 . . . . .  l(Q + 1, for all X ~ dg',~,~ ( + )  

Wx,v,+,, _,t(q(~,(i)) < , - l q , _  , - ' 3 ( Q  + , - ' r ( , )  < , - lq ,  

Wx,,~,. _,t(q~,(i))  > , - l q ,  + , -13( , )  _ , - l r ( , )  > , - , q ,  

Owing to the monotonicity property of the maps Wx .... (see the end of 
Section 2), the two last inequalities imply that for any ~ > 0 and i = 0, 
1 . . . . .  I(,) + 1 for all X ~ IQ. i  ( + )  

ITy-,,X n (I, x Ji)l < I x N (L A(0 X J,)i (4.9) 

r + 1~/ ,  /_[_~ Let ~ / ~ ( + )  be the intersection ll~=0 d,~ ). Then 

P ~ ( ~  \ ~  (+)) < (1/2)i(0 
and for any X ~ t Q  ( + )  and all i = 0 . . . . .  l(,) + 1 the inequality (4.9) 
holds. Hence, for any c > 0 and X E J /~  ( + )  

I T~,,X n Er <. Ix n E,~C I 
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Proceeding in the same way one can see that for any c > 0 there is a set 
~ / ~ ( - ) c ~ / ~  such that P'(dK,~\JK,~(-))<(1/2)[(e)  and for any X 
~ ~ ( - )  

IT/-,tX ~ E,[ > [X ~ EtV'[ 

Taking dt',~ = ~/~ ( - )  C3 ~ '~  ( + )  we obtain the assertion of Lemma 4.II. 
Now pass to the proof of (4.4). First we show that 

l imsupG;(E)  <<. ~dv~L,(,)dq.,j .%o go(q,v) (4.10) 
E--->O , , 

Observe that in force of Lemma 4.II 

g ( p ) 2 1 t ( E l ~ ) ~ ' ~  e ' ( d X ) l U , , x n e ~ l + ~  P'(dX)[Tff,,XnE, I 

<.< ~ oe ~ ( d x ) I x n  Fd'~l + ,-' d(q" - q' ) P ' ( ~g/ jl ', ~g ,~ ) 
.A( d 

< g(e})(Et A` ) + e- ld]q  " - q'l i(e) 
whence 

GT(E) < (K(e~)(E/'~ ) + d-~lq" - q'l [(e) (4.11) 
Given v E J, we set ~, = ([ fi(e)-l(v - v')] + l)fi(() and 

a , (v )  = - '  - '  " " U~o,~,,,(q'- 8( ,)) ,  b,(v) = + U~o,~,,,tq 8( , ) )  
Then 

l(,) 
eKe(!) (EtA' ) = __~ ~ ( dqdvk(eX)(,-lq, v)=fdv(b'(V)dqk(el)(e-Iq,  v) 

"= . ) d A ( i ) x J i  ,)J da,(v) 

Because of the continuity property of the maps ugo,c, t, for any v ~ R 1 

lima,(v) = - l  , Ugo.v,t( q ), lira be(v ) = Ugo, v.t( q -~ ") 
e-~O e-~O 

From condition (ii) of Theorem 4.1 and the dominated convergence theo- 
rem it follows that 

limeK(e!)(E,A" ) = ( d v  f U@'(q")dq go(q,v) (4.12) 
~-~0 . / j  ..'uZo,v.t(q" ) 

Together with (4.11) this gives (4.10) since lim,_>0[(c ) = 0  and u~o.lv,,(I) 
= [ug-~,[t(q'), uL'~,,(q")]. 

The inverse inequality 

l im in fG/ (E)  >~ f d v f  , dq go(q,v) (4.13) 
~ o  j u~o.v,,(l ) 

may be proved in a similar way with replacing Et A` by E, v ' .  The inequali- 
ties (4.10) and (4.13) imply (4.4). Theorem 4.1 is proved. [] 
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5. FAMILIES OF STATES SATISFYING THE CONDITIONS OF THE 
CONVERGENCE THEOREM 

In this section we give examples of families of states for which the 
conditions of Theorem 4.I hold. The states will be Gibbs states with a 
potential d#, such that qb~ n) = 0 for n >/3, and d9~ 2) does not depend on the 
particle velocities (see Definitions 2.3, 2.4). These restrictions are not 
essential and are used to simplify the technical details. 

Let go ~ 5r for some function + ~ J (see Definition 3.5). We set 

V(q,v) = - i n  g0(q,(>) (q,v) E M (5.1) 

Furthermore let a function U : ~1 • ~1+ ~ ~l be given, with the follow- 
ing properties. 

Condition 5.1. (i) U(q,r)= + ~ i f 0 < r < d ,  and U(q,r)< + ~ i f  
r > d; (ii) there is a constant B > - ~  such that U(q,r)>-B, (q,r)  

~l • RI+ ; (iii) there are constants c o > 0, c I > d and x 0 > 0 such that 
.R+ [ U(q, r) I < c0 r-(3+~~ for r > c I ; (iv) for any r > d the function U( . , r ) "  l 

~ R  1 is of class C 1 and I(O/~q)U(q,r) i < c=r -~=+~~ for some c 2 > 0. 

Remark. The reader may have in mind the simple case in which the 
function U(q,r) does not depend on q E R j, for which the proofs are 
simpler. 

For a given function /~:R1---)R 1 consider the family of auxiliary 
translation invariant c potentials (~(q), q E R ~ } which are given by 

~(1)r,, ~ = const =/~(q)  - lnogo(q), ql ~ ~ (q)t'/1) 
~ ( 2 ) l r i .  (q~t~tv, ,q2))) = U(q, Iq, - q=l), q~ ,q2 ~ R', q, # q2 (5.2) 

~(") --= 0, n /> 3 (q) 

It is well known (see Refs. 13, 14, and 15) that, given an arbitrary 
function/~, for any q E ~ there is a unique Gibbs e state Q(q) = Q(T,~q~) 
with c potential ~(q), and Q(q) is a translation-invariant c state. We are 
interested in a particular choice of the function/z which is indicated in the 
following proposition. 

Proposition 5.1. For any q ~ R = there is a unique value /~(q) such 
that the following equality holds: 

exp[ -/~(q)lk'~)~, = 1 (5.3) 

[see Eq. (2.13)]. Furthermore the function/~(q), q E R l, is continuous and 
bounded from below. 
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Proof. Existence and uniqueness of/ , (q)  follow from Ref. 16. In fact, 
for any q E ~ with ago(q) > 0 the map 

/~(q) E R 1 --> e x p [ -  g(q)]/~(~)q, E [O,(Ogo(q)d)-~ 1 

defines a nonincreasing function of the variable g(q), as it follows immedi- 
ately from the definition of Gibbs c state (Definition 2.4). According to 
Ref. 16 this function is analytic, and hence strictly increasing with 
lim~(q) _++ = exp [ -  # (q)]/~(Q10~) -- 0, lim~( q)_,_ = e x p [ - / ,  (q)] k^~)~, = [~rgo(q)d]- 1 
> 1. Therefore there is a unique/,(q) such that Eq. (5.3) holds. If ag0(q) = 0 
we set/ , (q) = 0, taking into account that /~)~ = 1 in this case. 

Furthermore, it follows from the analyticity result of Ref. 16 and 
condition 5.1 (iv) that/~(q) is continuous, and conditions 5.1 (i)-(iii) and 
Eq. (2.13a) give the inequality 

k̂ ~2~)q) <1 + e x p { - B [ ( c , - d ) d - ' +  1] +(co/d) f~176 -(3+~~ (5.4) 
cl J 

Henceforth the symbol/~(q) will denote the value mentioned in Propo- 
sition 5.1. 

An important property of the c states Q(q), q e R ~, is that they are 
uniformly approximated by the conditional Gibbs states for finite volumes 
(see Definition 2.4). In particular, setting 

c("s'q')( �9 I v )  = �9 I Y), r e Jl/a((I (') + q,)C) (5.5) 

where I (s) = [-s,s], one has 

lim sup sup 1/~1(),_/~(c~)q.s,q,,(. I r)(q')l = 0 (5.6) 
s--->oo qE~l  y EjUa((l(S) + q,)C ) 

(note that the internal sup does not depend on q'). The proof of Eq. (5.6) 
follows immediately from the arguments of Refs. 13, 14, and 15. 

Consider now the potentials ~, ,  c > 0, given by 

'~')(q, ,v,) = ~,(,q,) + V(,q, ,v,), (q, ,v,) ~ M 

r ,v,), (q2,v2)}) = �89 [ U ( c q , ,  Iq, - q2l) + U ( ' q 2 ,  Iq, - q21)], 
(5.7) 

(qi,vi) E M, i = 1,2, (q,,vl) #(q2 ,v2)  

cb{") ~ O, n >>- 3 
We can now state our convergence theorem. 

Theorem 5.11. Let the potential if,, e > 0, be given by Eq. (5.7), 
where the function V is given by Eq. (5.1), the function U satisfies 
assumption 5.1, a n d / ,  is as stated in Proposition 5.1. Then for any e > 0 
there is a unique Gibbs state with potential ~, ,  and the family of states 
{P", e > 0} satisfies the assumptions of Theorem 4.I. 
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Proof. Existence and uniqueness of the Gibbs state with potential O~ 
may be proved, using condition 5.1, along the lines of the papers of Refs. 
13, 14, and 15. Since the necessary modifications involve only a few 
technical details, we shall omit the proof. 

In order to prove that the assumptions of Theorem 4.I are satisfied, we 
state some properties of the states P �9  which are needed. Such properties are 
essentially related to the construction of the states P~, as it is done in Refs. 
13, 14, and 15, and may be proved following the same pattern, with the 
necessary technical modifications. 

Property (A). The states P�9 E > 0, are concentrated on the set ~ ' a  
[Eq. (2.17)], i.e., P � 9  1. This property follows immediately from 
condition 5.1 (i) and the fact that Gibbs states are locally absolutely 
continuous. 

Property (B). For any e > 0 the 1-particle correlation function has 
the form 

k(! ) ( q, v) = go(r v)exp[ - /~ (r AO) (q) (5.8) 

where kp is defined by Eq. (2.13), and is uniformly bounded: 

/~(~) (q) < RHS of Eq. (5.4) (5.9) 

This property follows easily from Eq. (5.7) and conditions 5,1 (i)-(iii). 
Property (C). The particle density ap~ [see Eq. (2.7)-(2.8')] is bounded 

away from d -  1. 

sup %,,(q) = E < d - '  (5.10) 
�9 > 0 , q ~ N  I 

This follows from the condition go ~ J ,  from the boundedness of/~ from 
below (see Proposition 5.I), and conditions 5.1 (i)-(iii), which hold uni- 
formly in q ~ R ~. 

Property (D). Setting 

G(�9  X ~ ' a + ( ( I ( ' ) + q )  c) (5.11) 

where I (~) = [ - s ,  s], one has, in analogy with Eq. (5.6), 

lim sup sup ]/~(el)(q) - k~(a~)~"q~( . Ix)(q)[ = 0 (5.12) 
s -~oe  �9 > O,q ~ W X E ,A'~- ( ( I  (s) + q)C) 

Property (E). There is a constant c E N~ such that the random 
variable ~ixs [defined by Eq. (2.4)] for any bounded interval I and for all 
subsets J c N 1 satisfies the inequality 

sup~p,~lxs < c[I] (5.13) 
e > 0  
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This property follows in a standard way from the fact that the uniform 
mixing coefficient 8(s), s E R 1 defined by + ,  

8 ( s ) =  sup supess (W)  sup 
e>0,So>0 X @Jg/ A ~ ( I  (so) + q) 

qEN ~ 

is integrable, i.e., fw+~(s)ds < oe. 
We pass now to verifying the assumptions of Theorem 4.I. 
We start with assumption (i). From properties (A), (C), and (E) above, 

using the Chebyshev inequality, it follows easily that P ' ( ~ / a  + ) = 1. There- 
fore, to check assumption (i) we need to prove that for P'-a.a. X ~ t / and 
all ~-EN 1, (q,v)~ M, the quantities nx(q,v,t ) given by Eq. (2.27) are 
finite. A simple analysis shows that they are finite for all ~-E R 1 and 
(q, v) ~ M, if they are finite when ~- and (q, v) belong to some countable 
sets which are dense in R s, M, respectively [say, for rational r and (q, v)]. 
The latter fact will be proved if we prove that for any e > 0, ~- ~ ~1, and 
(q, v) ~ M, the quantities nx( q, v, ,r) are finite for P ' -a .a .X.  To prove this 
we shall find two sequences of (proper) random variables (~Tj-+ = %-+.~,j, 
j = 1,2 . . . .  ) such that lmmj~mP ((n~(q,v,'c) < ~?j+- )) = 1 for any e > 0. 

For definiteness we assume r > 0 and consider the case " +  ." The 
reader can extend the arguments to the other cases without difficulty. We 
set 

nj + (X) = k ~++(j')• X E ~ -  (5.14) 
j ' = l  

where 

and 

Ij(j')=[q,q+sj(j')], J ( j ' ) = [ v - 2 J ' + l , v - 2 / - l + l )  

r2J, ] J' sj(j')=max l ~ d  ' j  ' j ,  = 1 , 2  . . . .  

being defined by Eq. (5.10). For any j =  1,2 . . . .  and c >0 ,  using 
property (B), the uniform boundedness o f / ,  from below and the fact that 
go E • we have 

[F P~2qj + = ~ ~ - P ~ I j ( j ' ) x J ( j ' )  
j ' = l  

oo 

< 2 [" dq'av'k P(q',v') 
j '  = 1 dIj(j ')  • J( j ' )  

cx) 

< const + c o n s t ' r ( 1 -  gM)-'212Y'[-(j')dv+(v)j,=as < oe (5.15) 
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(Here the constants may depend on j). Hence P~((~j+ < oe)= 1. To 
complete the proof we introduce the representation 

0o 

n[, (q , v , z )  = ~ n~s(j,)(q,v,T ) (5.16) 
j ' = l  

where we introduced the notation 

n + xj (q ,v ,~)  = I(x~,~)(~))tq,+~)xjI, j c ( -  oo,v] (5.17) 

We need at this point some simple properties of n~j(q ,  v,'r) for a bounded 
J = [ a ~ , a 2 ] C ( - o o , v ] .  It is easy to see that nff6j(q,v,T ) is equal to the 
number of values of i E 7/1+ for which (a) v}q)(x) ~ J and (b) (q}q)(X) - 
id + .rv~q)(x), v(q)(x)) < ((q + .cv), v). This is less or equal to the number of 
values of i ~ Zl+ for which condition (a) holds and (b') q}q)(x) - id < q + 
~-v - ~-a 1, which in its turn is bounded from above by the quantity 

inffJXiq,q+s]x]J : s  >~ O,s - -  dlX[q,q+s]• j > "r (v -  a l ) -  d )  

Now, according to the Chebyshev inequality and property (E) [see Eq. 
(5.13)], for any e,~, > 0 we have 

(5.18) 

Therefore, if for some s and Y 

then 

s - dfq q+sdq'(~dv'k(p!)(q''v')a~ - yd > "r(v - al) - d (5.19) 

+ c! (5.20) 

In a similar way one can prove that, if for some s and y 

then 

S -- dfqq+Sdqr163 ' k(1)(q', ~) ') q- yd  (,/-(1.) - a2) - d (5 .2 l )  

+ c_L (5.22) e~(( x ~ ~ Z  : .x , j (q ,v , . )<  IXq,q+.• < v= 

Take now s = ~.(j') + (~(j ,))7/8,  7 = (~(j,))2/3. It is easy to check that fo r j  
large enough the bound (5.19) holds when J is replaced by J ( j ' )  for all 
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j '  = 1 , 2 , . . . .  Therefore 

P'((X ~ ~{~ :n; (q,v,r) > ~/j+ }) 

<. e ' ( ( x  > 

< c k sj(j') - ' /3 (5.23) 

The right-hand side of Eq. (5.23) tends to 0 when j--> ~ .  This proves 
assumption (i). 

To check assumption (ii) of Theorem 4.I, observe that inequality (4. la) 
follows from property (B), the uniform boundedness of/~ from below, and 
the fact that go ~ J~ (q5 can be taken proportional to t)). As for Eq. (4.1b), 
in view of Eq. (5.3), it is enough to prove that for any q ~ R 1 

limk'~!) ( e - ' q ) =  k~)~) (5.24) 
~-->0 

Using Eq. (5.6) and property (D), we reduce the problem to proving that 
for a n y q ~ R 1  a n d s > 0  

lim sup [/~(cP,,,.,-'q,(. ]x)(l~-lq) -- /~(G{)q.,,q)(. IS(, i,)qyx)(q)l = 0 
e-->O X E ~ "  f ( ( l  (s) + r - lq)C) 

(5.25) 

where Yx = (q ~ RI :(q,v) ~ X for some v ~ RI}. Equality (5.25) is veri- 
fied in a straightforward way [one uses here condition 5.1 (iv) and the 
continuity properties of the functions/, (see Proposition 5.I) and go]. 

It remains to check assumption (iii) of Theorem 4.I, or, equivalently, 
assumption (iii') [see (4.2')]. We have to prove that for any 7 > 0, t ~ R* 
and bounded interval J the following relations hold uniformly in (q,v) 

N t X J :  

limP'((len x (e-lq, v,e-lt) - m~o(q,v,t)l > 7 } ) = 0  (5.26) 
r  \ v  �9 

[see (3.21)]. As above, we consider the case " + "  and t > 0. The reader can 
extend the proof to 
(q, v) E R 1 • J, we set 

b; =.p[ ln(1/ r ] -1, 

~s~ = ( v -  b~+l,v- b~], 

the other cases in a straightforward way. Given 

e~(0 ,1) ,  p = 0 , 1  . . . . .  O(c)= {[ in( l /c ) ]  2) 

(5.27) 

p = 0 . 1  . . . .  , p ( q ;  1 

(5.27') 
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Clearly n~-r(e-lq, v,e It) = "~;=~ ~ x - ' ~  , +  +:-lq,  v , e - l t )  + nj~ca,(e - lq, v, e-it). 
We check, first of all, that for any y > 0 

l i m P ' ( (  en2ca,(e-lq, v ,e -10  > r }) = 0 (5.28) 
r  \ k  

uniformly in (q, v) ~ ~1 • j .  To prove this we introduce, in analogy with 
Eq. (5.14), the random variables ~/j,+ replacing q by e-lq,  r by e-It, and v 
by v - bo( O . Takingj  large enough, we can make the probability 

P ' ( { X  + +e: �9 n ~ ( e - l q ,  v , e - ' t )  > ~j,; (X)} )  

arbitrarily small [see Eq. (5.23)]. Furthermore, since b~( O ---> m, i.e., v - be< 0 
+ - o  o, the expectation elEpalj + vanishes as e--->0 [see inequality (5.15)]. 
Hence, because of the Chebyshev inequality, " + P ({e~j, > 7}) vanishes as 
e + 0 for any y > 0. From what we said above it follows that the limit in 
Eq. (5.28) is arbitrarily small, and hence is zero. Note that all estimates and 
limit relations are uniform in (q, v) ~ ~1 • j .  

Therefore it suffices to prove that 

ffl P +  ' ]] 
l imP'[ te  ~'.ngca~(e-lq, v,e-l t)  - mg+o(q,v,t) > rfj =0 (5.29) 
r tL+:o 

For any q E R 1 we define the function W, = W,,q:~Z+--+[e-lq, ~ )  as the 
solution of the equation 

~ wc(U)dq'[1-apo(q')d]=u,  u~Rl+ (5.30) 
- lq 

In view of property (C) above, the solution W,(u) of Eq. (5.30) exists and is 
unique for all u E R~+. Furthermore the following inequalities hold: 

u(1 - gM)-l>-- W,(u) - e- lq  > u, u ~ ~l+ (5.31) 

We set 

w/(e)  = < ( e - W + ,  ) - e-lq, 

w/ (e )  = < ( e -  %) - e-Iq, 

r / ( e )  = [w/ (e ) ] ' / ' ,  

r+- (e) = [w+- (e)] '/' ,  

j = o, 1 , . . . ,  p(e) 
(5 .32)  

j = 1 ,2  . . . . .  9(e) 

j = 0, 1 . . . . .  O(e) 
(5 .33)  

j = 1, 2 . . . . .  O(e) 
It is not hard to check that for e small enough the bound (5.19) is valid if 
we replace q by e-lq,  s by sj+(e) = wj+(e) + [%+(0] 7/8, 3' by yj+(e), r by 
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c-it ,  and a I by v -  bf+ 1 for all j = 0, 1 . . . .  , p(c). Similarly, for ~ small 
enough, the bound (5.21) is valid if we replace q by ~-lq, s by sj-(~) 
~--" W j - ( E ) -  [Wj-(r 7/8, "~ by '~/j-(E), 'T by E-it, and a 2 by v - b f  for all 

j = 1,2 . . . . .  p(c). Hence the estimates (5.20) and (5.22) give 

{ o(~) p(~) 
P X ~ ~1{I : E ~[c 'q,~-'q+sj-(c)l• ~ E nffca~(c-'q,v,e-'t) 

j = l  j=O 

~ E ~[e-'q,c-lq+sj+(e)]xA~(X) 
j=0 

1 - ( 5 . 34 )  

where the right-hand side can be taken independent of q E R 1 and v ~ J. 
Hence it suffices to prove that both variables I 

o(~) and c~j=0[X[~ ,q,,-,q+C~)l• I tend to mg+o(q,v,t) in the sense of conver- 
gence in probability, uniformly in (q, v) E R I • J. 

Let us consider the " - "  case. The other one is treated similarly. Using 
definitions (5.27), (5.27'), and (5.32) we see that the limiting behavior of 

o(0 

E e '  ~ ~[, 'q , , - 'q+~-( ,)]•  
j = l  

is the same as that of 

s / ~)dl), fq~W,(e- 't(v - v')) dq, k(eO( ~ _ ,q,, v ' )  

From definition (5.30) and assumption (ii) of Theorem 4.I, it follows that 

limEW,(c-'t(v - v ' ) )  = Bgo_~(q + t ( v  - v ' ) )  ~. --# 0 " " 

[see Eq. (3.8)]. Using again assumption (ii) of Theorem 4.I, we conclude 
that 

p(O 
limEEe, E ~[~-tq,c-'q+~-(c)] • ~V dt)t f B~o,l(q+t(v_v,))dqt go(q ',t)') 
c-~0 j = 1 .J - c~ ..'q 

= f:oodv'fqq+t(v-v')dq' fq(q',v') 

=mg+o(q,v,t) 

Notice that the relation (5.35) is uniform in (q, v) ~ ~1 • j .  

(5 .35 )  
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N o w  the Chebyshev  inequal i ty  together  with p rope r ty  (E) gives 

p(Q o(c) 

j = l  

}) 2 [wj- 
j = l  

< O (el/Zln3/2(1//e))  (5.36) 

where  aga in  the r igh t -hand  side is i ndependen t  of ( q , v ) ~  N~•  J .  This  
conc ludes  the p roof  of Eq. (5.29). Theo rem 5.II is proved.  
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